Computation with Spikes in a Winner-Take-All Network
نویسندگان
چکیده
The winner-take-all (WTA) computation in networks of recurrently connected neurons is an important decision element of many models of cortical processing. However, analytical studies of the WTA performance in recurrent networks have generally addressed rate-based models. Very few have addressed networks of spiking neurons, which are relevant for understanding the biological networks themselves and also for the development of neuromorphic electronic neurons that commmunicate by action potential like address-events. Here, we make steps in that direction by using a simplified Markov model of the spiking network to examine analytically the ability of a spike-based WTA network to discriminate the statistics of inputs ranging from stationary regular to nonstationary Poisson events. Our work extends previous theoretical results showing that a WTA recurrent network receiving regular spike inputs can select the correct winner within one interspike interval. We show first for the case of spike rate inputs that input discrimination and the effects of self-excitation and inhibition on this discrimination are consistent with results obtained from the standard rate-based WTA models. We also extend this discrimination analysis of spiking WTAs to nonstationary inputs with time-varying spike rates resembling statistics of real-world sensory stimuli. We conclude that spiking WTAs are consistent with their continuous counterparts for steady-state inputs, but they also exhibit high discrimination performance with nonstationary inputs.
منابع مشابه
Spiking Inputs to a Winner-take-all Network
Recurrent networks that perform a winner-take-all computation have been studied extensively. Although some of these studies include spiking networks, they consider only analog input rates. We present results of this winner-take-all computation on a network of integrate-and-fire neurons which receives spike trains as inputs. We show how we can configure the connectivity in the network so that th...
متن کاملFast computation with spikes in a recurrent neural network.
Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as models of the brain. Here we analytically study a counterexample, a network consisting of N integrate-and-fire neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving inputs. When the inhibition and/or excitation are large enough, t...
متن کاملOn the Computational Power of Winner-Take-All
This article initiates a rigorous theoretical analysis of the computational power of circuits that employ modules for computing winner-take-all. Computational models that involve competitive stages have so far been neglected in computational complexity theory, although they are widely used in computational brain models, artificial neural networks, and analog VLSI. Our theoretical analysis shows...
متن کاملNeural Computation with Winner-Take-All as the Only Nonlinear Operation
Everybody “knows” that neural networks need more than a single layer of nonlinear units to compute interesting functions. We show that this is false if one employs winner-take-all as nonlinear unit: Any boolean function can be computed by a single -winner-takeall unit applied to weighted sums of the input variables. Any continuous function can be approximated arbitrarily well by a single soft w...
متن کاملA Spiking Independent Accumulator Model for Winner-Take-All Computation
Winner-take-all (WTA) mechanisms are an important component of many cognitive models. For example, they are often used to decide between multiple choices or to selectively direct attention. Here we compare two biologically plausible, spiking neural WTA mechanisms. We first provide a novel spiking implementation of the well-known leaky, competing accumulator (LCA) model, by mapping the dynamics ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2009